讲解数学体系的一篇好文:在数学的海洋中飘荡(下)

最后编辑于 2019年10月07日 科技

代数:一个抽象的世界

关于抽象代数

回过头来,再说说另一个大家族——代数。

如果说古典微积分是分析的入门,那么现代代数的入门点则是两个部分:线性代数(linear algebra)和基础的抽象代数(abstract algebra)——据说国内一些教材称之为近世代数。

代数——名称上研究的似乎是数,在我看来,主要研究的是运算规则。一门代数,其实都是从某种具体的运算体系中抽象出一些基本规则,建立一个公理体系,然后在这基础上进行研究。一个集合再加上一套运算规则,就构成一个代数结构。在主要的代数结构中,最简单的是群(Group)——它只有一种符合结合率的可逆运算,通常叫“乘法”。如果,这种运算也符合交换率,那么就叫阿贝尔群(Abelian Group)。如果有两种运算,一种叫加法,满足交换率和结合率,一种叫乘法,满足结合率,它们之间满足分配率,这种丰富一点的结构叫做环(Ring),如果环上的乘法满足交换率,就叫可交换环(Commutative Ring)。如果,一个环的加法和乘法具有了所有的良好性质,那么就成为一个域(Field)。基于域,我们可以建立一种新的结构,能进行加法和数乘,就构成了线性代数(Linear algebra)。

代数的好处在于,它只关心运算规则的演绎,而不管参与运算的对象。只要定义恰当,完全可以让一只猫乘一只狗得到一头猪:-)。基于抽象运算规则得到的所有定理完全可以运用于上面说的猫狗乘法。当然,在实际运用中,我们还是希望用它干点有意义的事情。学过抽象代数的都知道,基于几条最简单的规则,比如结合律,就能导出非常多的重要结论——这些结论可以应用到一切满足这些简单规则的地方——这是代数的威力所在,我们不再需要为每一个具体领域重新建立这么多的定理。

抽象代数有在一些基础定理的基础上,进一步的研究往往分为两个流派:研究有限的离散代数结构(比如有限群和有限域),这部分内容通常用于数论,编码,和整数方程这些地方;另外一个流派是研究连续的代数结构,通常和拓扑与分析联系在一起(比如拓扑群,李群)。我在学习中的focus主要是后者。

线性代数:“线性”的基础地位

对于做Learning, vision, optimization或者statistics的人来说,接触最多的莫过于线性代数——这也是我们在大学低年级就开始学习的。线性代数,包括建立在它基础上的各种学科,最核心的两个概念是向量空间和线性变换。线性变换在线性代数中的地位,和连续函数在分析中的地位,或者同态映射在群论中的地位是一样的——它是保持基础运算(加法和数乘)的映射。

在learning中有这样的一种倾向——鄙视线性算法,标榜非线性。也许在很多场合下面,我们需要非线性来描述复杂的现实世界,但是无论什么时候,线性都是具有根本地位的。没有线性的基础,就不可能存在所谓的非线性推广。我们常用的非线性化的方法包括流形和kernelization,这两者都需要在某个阶段回归线性。流形需要在每个局部建立和线性空间的映射,通过把许多局部线性空间连接起来形成非线性;而kernerlization则是通过置换内积结构把原线性空间“非线性”地映射到另外一个线性空间,再进行线性空间中所能进行的操作。而在分析领域,线性的运算更是无处不在,微分,积分,傅立叶变换,拉普拉斯变换,还有统计中的均值,通通都是线性的。

泛函分析:从有限维向无限维迈进

在大学中学习的线性代数,它的简单主要因为它是在有限维空间进行的,因为有限,我们无须借助于太多的分析手段。但是,有限维空间并不能有效地表达我们的世界——最重要的,函数构成了线性空间,可是它是无限维的。对函数进行的最重要的运算都在无限维空间进行,比如傅立叶变换和小波分析。这表明了,为了研究函数(或者说连续信号),我们需要打破有限维空间的束缚,走入无限维的函数空间——这里面的第一步,就是泛函分析。

泛函分析(Functional Analysis)是研究的是一般的线性空间,包括有限维和无限维,但是很多东西在有限维下显得很trivial,真正的困难往往在无限维的时候出现。在泛函分析中,空间中的元素还是叫向量,但是线性变换通常会叫作“算子”(operator)。除了加法和数乘,这里进一步加入了一些运算,比如加入范数去表达“向量的长度”或者“元素的距离”,这样的空间叫做“赋范线性空间”(normed space),再进一步的,可以加入内积运算,这样的空间叫“内积空间”(Inner product space)。

大家发现,当进入无限维的时间时,很多老的观念不再适用了,一切都需要重新审视。

  1. 所有的有限维空间都是完备的(柯西序列收敛),很多无限维空间却是不完备的(比如闭区间上的连续函数)。在这里,完备的空间有特殊的名称:完备的赋范空间叫巴拿赫空间(Banach space),完备的内积空间叫希尔伯特空间(Hilbert space)。
  2. 在有限维空间中空间和它的对偶空间的是完全同构的,而在无限维空间中,它们存在微妙的差别。
  3. 在有限维空间中,所有线性变换(矩阵)都是有界变换,而在无限维,很多算子是无界的(unbounded),最重要的一个例子是给函数求导。
  4. 在有限维空间中,一切有界闭集都是紧的,比如单位球。而在所有的无限维空间中,单位球都不是紧的——也就是说,可以在单位球内撒入无限个点,而不出现一个极限点。
  5. 在有限维空间中,线性变换(矩阵)的谱相当于全部的特征值,在无限维空间中,算子的谱的结构比这个复杂得多,除了特征值组成的点谱(point spectrum),还有approximate point spectrum和residual spectrum。虽然复杂,但是,也更为有趣。由此形成了一个相当丰富的分支——算子谱论(Spectrum theory)。
  6. 在有限维空间中,任何一点对任何一个子空间总存在投影,而在无限维空间中,这就不一定了,具有这种良好特性的子空间有个专门的名称切比雪夫空间(Chebyshev space)。这个概念是现代逼近理论的基础(approximation theory)。函数空间的逼近理论在Learning中应该有着非常重要的作用,但是现在看到的运用现代逼近理论的文章并不多。

继续往前:巴拿赫代数,调和分析,和李代数

基本的泛函分析继续往前走,有两个重要的方向。第一个是巴拿赫代数(Banach Algebra),它就是在巴拿赫空间(完备的内积空间)的基础上引入乘法(这不同于数乘)。比如矩阵——它除了加法和数乘,还能做乘法——这就构成了一个巴拿赫代数。除此以外,值域完备的有界算子,平方可积函数,都能构成巴拿赫代数。巴拿赫代数是泛函分析的抽象,很多对于有界算子导出的结论,还有算子谱论中的许多定理,它们不仅仅对算子适用,它们其实可以从一般的巴拿赫代数中得到,并且应用在算子以外的地方。巴拿赫代数让你站在更高的高度看待泛函分析中的结论,但是,我对它在实际问题中能比泛函分析能多带来什么东西还有待思考。

最能把泛函分析和实际问题在一起的另一个重要方向是调和分析(Harmonic Analysis)。我在这里列举它的两个个子领域,傅立叶分析和小波分析,我想这已经能说明它的实际价值。它研究的最核心的问题就是怎么用基函数去逼近和构造一个函数。它研究的是函数空间的问题,不可避免的必须以泛函分析为基础。除了傅立叶和小波,调和分析还研究一些很有用的函数空间,比如Hardy space,Sobolev space,这些空间有很多很好的性质,在工程中和物理学中都有很重要的应用。对于vision来说,调和分析在信号的表达,图像的构造,都是非常有用的工具。

当分析和线性代数走在一起,产生了泛函分析和调和分析;当分析和群论走在一起,我们就有了李群(Lie Group)和李代数(Lie Algebra)。它们给连续群上的元素赋予了代数结构。我一直认为这是一门非常漂亮的数学:在一个体系中,拓扑,微分和代数走到了一起。在一定条件下,通过李群和李代数的联系,它让几何变换的结合变成了线性运算,让子群化为线性子空间,这样就为Learning中许多重要的模型和算法的引入到对几何运动的建模创造了必要的条件。因此,我们相信李群和李代数对于vision有着重要意义,只不过学习它的道路可能会很艰辛,在它之前需要学习很多别的数学。

现代概率论:在现代分析基础上再生

最后,再简单说说很多Learning的研究者特别关心的数学分支:概率论。自从Kolmogorov在上世纪30年代把测度引入概率论以来,测度理论就成为现代概率论的基础。在这里,概率定义为测度,随机变量定义为可测函数,条件随机变量定义为可测函数在某个函数空间的投影,均值则是可测函数对于概率测度的积分。值得注意的是,很多的现代观点,开始以泛函分析的思路看待概率论的基础概念,随机变量构成了一个向量空间,而带符号概率测度则构成了它的对偶空间,其中一方施加于对方就形成均值。角度虽然不一样,不过这两种方式殊途同归,形成的基础是等价的。

在现代概率论的基础上,许多传统的分支得到了极大丰富,最有代表性的包括鞅论(Martingale)——由研究赌博引发的理论,现在主要用于金融(这里可以看出赌博和金融的理论联系,:-P),布朗运动(Brownian Motion)——连续随机过程的基础,以及在此基础上建立的随机分析(Stochastic Calculus),包括随机积分(对随机过程的路径进行积分,其中比较有代表性的叫伊藤积分(Ito Integral)),和随机微分方程。对于连续几何运用建立概率模型以及对分布的变换的研究离不开这些方面的知识。

终于写完了——也谢谢你把这么长的文章看完,希望其中的一些内容对你是有帮助的。

在数学的海洋中飘荡原文:
在数学的海洋中飘荡

林达华:
http://dahualin.org/

登录注册后才能评论。